4. Funkcje.
Oś symetrii wykresu funkcji kwadratowej
Oś symetrii wykresu funkcji kwadratowej (oś symetrii paraboli) to prosta równoległa do osi Oy, przechodząca przez wierzchołek funkcji kwadratowej. Zatem:
Oś symetrii wykresu funkcji kwadratowej ma wzór: x=\frac{-b}{2a}.
Przykład. Znajdź wzór osi symetrii wykresu funkcji kwadratowej: y=x^2-2x-3.
x=\frac{-b}{2a}=\frac{-(-2)}{2\cdot 1} = \frac{2}{2} = 1
Zatem szukana oś symetrii ma wzór x = 1:
Przykład. Znajdź wzór osi symetrii wykresu funkcji kwadratowej: y=-2x^2-6x-5.
x=\frac{-b}{2a}=\frac{-(-6)}{2\cdot (-2)} = \frac{6}{-4} = -\frac{3}{2}
Zatem szukana oś symetrii ma wzór x = -\frac{3}{2}: