0% przygotowania do matury

Środek odcinka

Środek odcinka AB to punkt o współrzędnych: (\frac{x_{A}+x_{B}}{2},\frac{y_{A}+y_{B}}{2}), gdzie A = (x_{A},y_{A}) i B = (x_{B},y_{B}).

Jak widać, aby obliczyć współrzędne środka odcinka wystarczy obliczyć średnie arytmetyczne współrzędnych x i y końców tego odcinka.

Zadanie. Oblicz współrzędne środka S odcinka BC, którego końce mają współrzędne: B = (-2,3) i C = (2,-1).

Liczymy współrzędne środka odcinka o końcach B i C, dlatego do wzoru bierzemy współrzędne punktów B i C, czyli (x_{B},y_{B}) i (x_{C},y_{C}):

S = (\frac{x_{B}+x_{C}}{2},\frac{y_{B}+y_{C}}{2})

U nas: x_{B} = -2, y_{B} = 3, x_{C} = 2, y_{C} = -1, czyli:

S = (\frac{-2+2}{2},\frac{3+(-1)}{2}) = (\frac{0}{2},\frac{2}{2}) = (0,1)

odcinek BC w układzie współrzędnych i jego środek S